当前位置:首页教育技巧excel技巧excel数据库

EXCEL笛卡尔坐标系,电子表格笛卡尔坐标形式

2024-09-12 08:45:30


1. 笛卡尔坐标形式

笛卡尔坐标系 (Cartesian coordinates) 就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。仿射坐标系和笛卡尔坐标系平面向空间的推广相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。

2. 笛卡尔坐标系定义

高中数学坐标系名称平面直角坐标系,又称笛卡尔坐标系。

3. 笛卡尔坐标形式表示下列复数

数学中一般用f表示函数。

如f(x)=2x+3,就是一次函数。

象限(Quadrant),是平面直角坐标系(笛卡尔坐标系)中里的横轴和纵轴所划分的四个区域,每一个区域叫做一个象限。主要应用于三角学和复数中的坐标系。象限以原点为中心,x,y轴为分界线。右上的称为第一象限,左上的称为第二象限,左下的称为第三象限,右下的称为第四象限。原点和坐标轴上的点不属于任何象限。

4. 笛卡尔坐标形式如何表示4-i\5+2i

笛卡尔坐标系 (Cartesian coordinates) 就是直角坐标系和斜角坐标系的统称。

相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。

仿射坐标系和笛卡尔坐标系平面向空间的推广

相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。

笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。

笛卡尔和笛卡尔坐标系的产生

据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。

  直角坐标系的创建,在代数和几何上架起了一座桥粱,它使几何概念用数来表示,几何图形也可以用代数形式来表示。由此笛卡尔在创立直角坐标系的基础上,创造了用代数的方法来研究几何图形的数学分支——解析几何, 他大胆设想:如果把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特征的点组成的。举一个例子来说,我们可以把图看作是动点到定点距离相等的点的轨迹,如果我们再把点看作是组成几何图形的基本元素,把数看作是组成方程的解,于是代数和几何就这样合为一家人了。

5. 笛卡尔坐标形式和极坐标形式区别

极坐标法测量的原理是在平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。由于坐标系统是基于圆环的,所以许多有关曲线的方程、极坐标要比直角坐标系(笛卡尔形式)简单得多。比如双纽线、心脏线。

6. 笛卡尔坐标形式有几种

三维坐标,是指通过相互独立的三个变量构成的具有一定意义的点。它表示空间的点,在不同的三维坐标系下,具有不同的表达形式。

圆柱坐标(ρ,θ,z)是.圆柱坐标系上的点的表达式。设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数ρ,θ,z来确定,其中ρ为点P在xoy平面的投影M与原点的距离,θ为有向线段PO在xoy平面的投影MO与x轴正向所夹的角。圆柱坐标系和三维笛卡尔坐标系的点的坐标的对应关系是,x=ρcosθ,y=ρsinθ,z=z。

球面坐标 也叫 球坐标,是一种三维坐标。球面坐标由到原点的距离、方位角、仰角三个变量构成。

设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为 r∈[0,+∞), φ∈[0, 2π], θ∈[0, π] . r = 常数,即以原点为心的球面; θ= 常数,即以原点为顶点、z轴为轴的圆锥面; φ= 常数,即过z轴的半平面。 其中 x=rsinθcosφ y=rsinθsinφ z=rcosθ

地心坐标系。它包括地心直角坐标系和地心极坐标系。地心直角坐标系(或称空间直角坐标系)以地球质心为坐标原点,以参考椭球体旋转轴为z轴,从原点向北为正向,以参考椭球体赤道面为xy平面。赤道面同参考椭球体上的本初子午面的交线为x轴,指向本初子午面的方向为正向。xyz三轴形成右旋系统。地面上任意一点的坐标可用X、Y、Z三个坐标值表示。地心极坐标系的经度λ的定义与大地经度的定义相同。地心纬度嗞 是地面上一点和地心的连线同参考椭球体赤道面的夹角。第三个坐标是该点的地心向径ρ。

7. 笛卡尔坐标形式怎么表示复数

在数学上,第四象限是直角坐标系(笛卡尔坐标系)中,主要应用于三角学和复数的阿根图(复平面)中的坐标系中的部分。

平面直角坐标系里的横轴和纵轴所划分的四个区域,分为四个象限。象限以原点为中心,x,y轴为分界线。右上的称为第一象限,左上的称为第二象限,左下的称为第三象限,右下的称为第四象限。

8. 笛卡尔坐标表示

笛卡尔坐标系的规定有:相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。笛卡尔坐标系就是直角坐标系和斜坐标系的统称。

9. 笛卡尔坐标形式(x+jy)

笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。

10. 笛卡尔坐标形式(x+jy)表示复数

复数实部与虚部的公式:e^(ix)=cosx+isinx。

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

  

  对于复数z=x+iy,其中x,y是任意实数,y称为复数z的虚部。y=Imz。在笛卡尔直角坐标系中,y轴的值为虚部。利用实部和虚部可以判断两个复数是否相等,定义共轭复数,计算复数的模和辐角主值

复数z的一般形式是z=a+bi,a∈R,b∈R。其中,a称为复数z的实部,b称为复数z的虚部。

一,实数、虚数与复数虚部的关系

复数包含实数和虚数,我们把实数和虚数统称为复数。

1、实数和复数虚部的关系

实数是虚部为0的复数。即,若复数“z=a+bi,a∈R,b∈R”的虚部b=0,则z=a∈R,此时复数z是实数。

2、虚数和复数虚部的关系

虚数是虚部不为0的复数。即,若复数“z=a+bi,a∈R,b∈R”的虚部b≠0,则z=a+bi是复数中的虚数。

二、共轭复数的实部、虚部关系

设复数z=a+bi,a∈R,b∈R,则把“a-bi,a∈R,b∈R”和复数z(注:“z=a+bi,a∈R,b∈R”)互称为共轭复数(注:虚部b≠0时,又互称为共轭虚数)。由此可知:

1、两个共轭复数的实部相等,虚部互为相反数。

2、因为实数是虚部为0的复数,所以实数与其共轭相等。即实数的共轭是其本身。

3、两个共轭复数的和为一个实数。如:(a+bi)+(a-bi)=2a∈R。(注:其中a∈R,b∈R)

4、两个共轭虚数的差是一个纯虚数。如:(a+bi)-(a-bi)=2bi。(注:其中a∈R,b∈R,b≠0)。

【注】纯虚数是实部为0并且虚部不为0的复数(或“纯虚数是实部为0的虚数”)。

5、复数的“模”等于实部与虚部平方和的算术平方根,所以,两个共轭复数的模相等。

三、两相等复数的实部、虚部关系

两个复数相等的充要条件是它们的实部和虚部分别对应相等。即:若a、b、c、d∈R,则复数a+bi=c+di的充要条件是“a=c且b=d”。

相关信息


电脑版

【免责声明】本站信息来自网友投稿及网络整理,内容仅供参考,如果有错误请反馈给我们及时更正,对文中内容的真实性和完整性本站不提供任何保证,不承但任何责任。
版权所有:学窍知识网 Copyright © 2011-2024 www.at317.com All Rights Reserved .