正态分布函数excel,电子表格正态分布函数图像
1. 正态分布函数图像
正态b分布曲线图δ 值越大μ值不变 ,说明随机变量的取值越分散,图像越低或者说越宽。
δ2就是正态分布的方差,表示随机变量取值的分散程度。
δ 值越越小,说明随机变量的取值集中在μ值附近,图像越高或者说越窄。
δ 值越大,说明随机变量的取值越分散,图像越低或者说越宽。
扩展资料
正态分布表达式中有两个参数,即期望(均数)μ和标准差σ,σ2为方差。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
2. 标准正态分布函数图像
正态分布标准化的公式:Y=(X-μ)/σ~N(0,1)。
证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}。
注:F(y)为Y的分布函数,Fx(x)为X的分布函数。
而F(y)=P(Y≤y)=P((X-μ)/σ≤y)=P(X≤σy+μ)=Fx(σy+μ)。
所以p(y)=F'(y)=F'x(σy+μ)*σ=P(σy+μ)*σ=[(2π)^(-1/2)]*e^[-(x^2)/2]。从而,N(0,1)。正态分布标准化的意义是可以方便计算,是一种统计学概念。
原本的正态分布图形有高矮胖瘦不同的形态,实际上是积分变换的必然结果,就好比是:
1.y=kx+b直线,它不一定过原点的,但是通过变换就可以了:大Y=y-b;大X=kx;===>大Y=大X。
2.y=a*b乘积,通过变换就可以变成加法运算:Ln(y)=Lna+Lnb。
3.y=ax2+bx+c通过变换就可以变成标准形式:y=a(x+b/(2a))2+(c-b2/(4a))。
正态分布的标准化也只不过是“积分变换”而已,虽然高矮胖瘦不同的形态,但是变量的线性伸缩变换并不改变其量化特性,虽然标准化以后都变成期望是0,方差是1的标准分布了,但这种因变量自变量的依赖关系仍然存在,不用担心会“质变”。
3. 正态分布函数图像的凹凸性
图像凹凸性是针对图像处理,函数凹凸性的是对函数
4. 二维正态分布函数图像
性质1: 设X是一个随机变量,其分布函数为F(x),则Y=F(X)服从在〔0,1〕的均匀分布。 性质2: 设X1,K,Xn是某个分布的一个简单样本,其分布函数为F(x),由性质1可知,在概率意义下,F(X1),F(X2),K,F(Xn)在(0,1)上呈均匀分布,按从小到大依次排序,记为F(X1),F(X2),K,F(Xn),其相应理论值应为ri=i-0,5[]n,i=1,2,…,n,对应分布函数的反函数值F-1(r1),F-1(r2),K,F-1(rn)(在卡方分布中即为卡方分数)应非常接近X1,X2K,Xn,故在概率意义下,这些散点(X1,F-1(r1)),(X2,F-1(r2)),L,(Xn,F-1(rn))应在一条直线上。 根据性质2,如果X服从正态分布,则散点理论上应落在一直线上,可以用Pearson系数刻画这种分布。但由于随机变异的存在,Pearson系数并不等于1,所以通过随机模拟的方法,制定出Pearson系数的95%界值下限。 性质3: 由条件概率公式P(X,Y)=P(Y|X)P(X)可知:(X,Y)服从二元正态分布的充分必要条件是固定X,Y服从正态分布(条件概率分布)并且X的边际分布为正态分布。由线性回归的性质ε=Y-(α+βX)可知,固定X,Y的条件概率分布为正态分布的充分必要条件是线性回归的残差ε服从正态分布,由此可得:(X,Y)服从二元正态分布的充分必要条件是X的边际分布为正态分布以及线性回归模型Y=α+βX+ε中的残差服从正态分布。 设X来自于正态总体,从正态总体中随机模拟抽样5000次,每次抽样样本含量分别为7至50,对F(x)求秩,求出排序后的F(x)和排序后的X的Pearson相关系数。表1 随机模拟5000次得到的检验正态分布的Pearson相关系数的界值(略) 类似地,我们也可以用同样的方法得到检验卡方分布的Pearson相关系数的界值表(简化表)表2 相关系数界值表(略) 2 随机模拟验证 21 Pearson相关系数界值表的随机模拟验证 设X来自于正态总体,从正态总体中随机模拟抽样5000次,每次抽样样本含量分别为10,20,30,40,50,并计算相应的Pearson卡方系数,以及落在界值外面的比例,即拒绝比例,再在同一批数据的前提下用McNemar检验比较本方法和Swilk法的差别。表3 (一元正态分布)模拟次数(略)表4(一元偏态分布,χ2)模拟次数(略) 以上方法拒绝比例在样本量为7的可信区间为[78.37%,94.12%],在其余样本量时都接近100%,可以证实是正确的。 22 卡方分布界值表的随机模拟验证 表5 卡方分布:模拟5000次(略) 23 马氏距离的随机模拟验证 根据马氏距离的定义,从正态分布总体中随机抽取样本量分别为10,20,30,40,50的样本模拟5000次,根据上面提到的方法以卡方分数对X1,X2K,Xn求Pearson系数,并根据以上的相关系数界值表,计算相应的统计量,即拒绝比例。表6 马氏距离落在Pearson系数界值表外的比例(略) 24 二元正态分布资料的随机模拟验证 设定一个二维矩阵A,分别求出特征值P和特征向量Z,设X的元素均来自于正态总体分布,则Y=Z′×X必服从二元正态分布,随机模拟5000次,根据性质三介绍的方法验证的拒绝比例如下。表7 (二元正态分布)模拟次数(略)表8 (二元偏态分布,χ2)模拟次数(略) 25 三元正态分布资料的随机模拟验证 类似地,随机模拟5000次,用同样方法进行验证,得到对于三元正态分布数据的拒绝比例。表9 (三元正态分布)模拟次数:5000次
5. 正态分布函数图像纵坐标是什么
正态分布的横坐标表示随机量取值,纵坐标表示概率密度。例如刚才讨论的人的身高分布,横坐标就表示身高,130cm-200cm之间。纵坐标是在一个身高范围内的人数占总人数的比例,比如在130-135cm范围内,有5%的人,那么该处的纵坐标就是0.05。在这种规定下,曲线下方的一小块面积就表示一个范围内身高人数占总人数的比例。在正态分布曲线上,最高的部位刚好在曲线中间,称为期望μ。而曲线的宽窄用标准差σ表示。σ越大,则线条越矮胖;σ越小,则线条越瘦高。高斯等数学家经过计算发现:满足正态分布的随机量,最后取值在μ-σ到μ+σ之间的概率大约是68.2%,在μ-2σ到μ+2σ之间的概率大约是95%等。
举例:还可以用正态分布预测高考成绩
一个人的考试成绩也受到多种因素的影响。比如自己学习成绩高低、考试那天的身体状态、题目的难易程度,甚至是考场上的风吹草动。所以考试成绩并不是确定的,而会有波动和起伏。如果我们认为这些因素都是随机不可预测的,那么最终的考生成绩也会满足正态分布。学习好的同学成绩的数学期望μ比较高,成绩稳定的同学成绩的标准差σ比较小。虽然我们不知道自己最终成绩如何,但是可以通过正态分布假设可以计算出自己成绩在各个区间的概率,从而推测自己是不是能考上清华。
6. 正态分布函数图像面积
一、正态分布曲线下的面积分布规律为:无论μ,σ取什么值,正态曲线与横轴间的面积总等于1。在μ±σ范围内,即μ-σ~μ+σ范围内曲线下的面积等于0.6827二、所谓的正态分布表都是标准正态分布表(n(0,1),通过查找实数x的位置,从而得到p(z
7. 正态分布函数图像方差越大
正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
8. 正态分布函数图像与方差
1、由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
2、为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
3、若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
4、μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
9. 正态分布函数图像生成器
获取正态分布概念密度 正态分布概率密度正态分布函数“NORMDIST”获取。 在这里是以分组边界值为“X”来计算: Mean=AVERAGE(A:A)(数据算术平均) Standard_dev=STDEV(A:A)(数据的标准方差) Cumulative=0(概率密度函数) 向下填充 在直方图中增加正态分布曲线图
1.
在直方图内右键→选择数据→添加→。
2.
系列名称: 选中H1单元格。
3.
系列值: 选中H2: H21。
4.
确定、确定。
10. 正态分布函数图像面积等于1
标准正态分布函数解析式为:
f(x)=(1/σ√(2π))exp(-(x-μ)2/(2σ2))
